Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Geological Storage - Modeling

Long-term simulations of CO₂ storage in saline aquifer

Y. Le Gallo, L. Trenty, A. Michel

CO₂ trapping mechanisms in saline aquifers

- Several trapping processes of CO₂ can exist with different characteristic times:
 - structural trapping: CO₂ is trapped as a dense phase according to the structural lithology of the storage
 - capillary trapping: CO₂ is trapped at residual gas saturation in the wake of the dense phase plume
 - solution trapping: CO₂ is dissolved in the liquid phase (oil or brine)
 - mineral trapping: CO₂ is incorporated into minerals due to chemical precipitation

Coupled processes in CO₂ geological storage

- multiphase fluid flow model in porous media:
 - permeability heterogeneities (absolute and relative)
 - pressure and temperature effects on CO₂ as a free or trapped phase (supercritical or gaseous) or dissolved within the aquifer.
 - pressure and temperature gradients both natural and induced during the injection process.
 - diffusion and dispersion within the aquifer and its geosphere (cap-rock and overburden).
 - reaction between host rock and storage fluids
 - fault and wells leakage pathways

Component conservation equations

Mass

accumulation

advection diffusion/dispersion

$$\frac{\partial}{\partial t} \left[\phi \left(\sum_{p=1}^{N_p} \rho_p \cdot S_p \cdot x_k^p \right) \right] + \nabla \cdot \left(\sum_{p=1}^{N_p} \rho_p \cdot x_k^p \cdot \vec{u}_p + \vec{J}_k^p \right) + Q_k + R_k = 0$$
source/sink

- well, aquifer
- reaction

$$\vec{u}_p = -\frac{\overline{K} \cdot k_{rp}}{\mu_p} (\vec{\nabla} P_p + \rho_p \cdot \vec{g})$$

Energy

$$\frac{\partial}{\partial t} \left[\phi \left(\sum_{p=1}^{N_p} \rho_p \cdot S_p \cdot U_p \right) \right] + \nabla \cdot \left(\sum_{p=1}^{N_p} \rho_p \cdot H_p \cdot \vec{u}_p + \vec{J}_T \right) + Q_T + R_T = 0$$

Constitutive Equations

Diffusion/dispersion diffusion (Fick's law)

Hydrodynamic dispersion

$$\overrightarrow{J_p^k} = -\rho_p \cdot S_p \cdot \frac{\phi \cdot D_p^k}{\overline{\tau}} \cdot \overrightarrow{\nabla} x_p^k + \rho_p \cdot D_l \cdot ||\overrightarrow{u_p}|| \cdot \overrightarrow{\nabla} x_p^k + \rho_p \cdot (D_l - D_l) \cdot \frac{\overrightarrow{\nabla} x_p^k \cdot \overrightarrow{u_p}}{||\overrightarrow{u_p}||} \cdot \overrightarrow{u_p}$$

– Heat flux (Fourier's law) $J_p^k = -\lambda^* \cdot \vec{\nabla} T$

$$\overrightarrow{J_p^k} = -\lambda^* \cdot \vec{\nabla} T$$

- Well source term
$$Q_{k} = \sum_{i} PI_{i} \cdot \frac{k_{rpi}}{\mu_{pi}} \cdot x_{p}^{k} \cdot \left[P_{i} - (P_{ref} + \overline{\rho_{p}}g\Delta Z)\right]$$

- Reaction
$$R_p^k = k_{reac}^k e^{-\frac{E_a}{RT}} \cdot S_{reac} \cdot \left[1 - \left(\frac{Q_p^k}{K_{ea,p}^k} \right)^n \right]$$

COORES coupling approach

- 3-D Dual-media multiphase (3 phases) fluid flow compositional in all phases with:
 - implicit pressure, temperature and components
 - sequential aqueous geochemical reaction coupling
 - external geomechanical coupling

Geochemical coupling

• Dual fluid approach => Consistency checks

External geomechanical coupling

3-D CO₂ storage in an heterogeneous saline

aquifer

- Size: $3000 \times 6000 \times 260 \text{ m}$ $\approx 37500 \text{ grid blocks}$
- Isothermal
- Two rock types:
 - quartz rich sand bodies with 3000 mD
 permeability and 35 % porosity.
 - illite and k-feldspar rich shale layers with 10 mD
 permeability and 10 % porosity.
- Dissolution and diffusion of CO₂ in Water

Rock type mineral compositions

	sand*	shale
anorthite (CaAl ₂ Si ₂ O ₈)	0%	10%
calcite (CaCO ₃)	1%	10%
dolomite (MgCa(CO ₃) ₂)	1%	10%
illite ($Si_{3.43}Al_{2.24}Mg_{0.38}O_{10}(OH)_2K_{0.8}$)	3%	25%
k-feldspar (KAlSi ₃ O ₈)	2%	25%
kaolinite ($Al_2Si_2O_5(OH)_4$)	2%	10%
quartz (SiO ₂)	90%	10%

^{*} data from Nghiem et al (2004)

Rock type relative permeabilities

• No hysteresis effect (residual trapping)

Supercritical CO₂ saturation

End of injection (50 years)

Dissolved CO₂ fraction

End of injection (50 years)

pH changes with respect to initial

End of injection (50 years)

Calcite volume fraction change with respect to initial

End of injection (50 years)

Dolomite volume fraction change with respect to initial

End of injection (50 years)

Carbonate mineral behavior during CO₂ injection

$$CO_2 + H_2O = H^+ + HCO_3^-$$

- fast kinetic rates for carbonate minerals:
- Calcite precipitation: limited by solution Ca²⁺

$$Ca^{2+} + HCO_3^- = CaCO_3 + H^+$$

• Dolomite precipitation: limited by solution Mg²⁺

$$Ca^{2+} + Mg^{2+} + 2HCO_3^- = MgCa(CO_3)_2 + 2H^+$$

Parallel precipitation reactions for calcite and dolomite

K-feldspar volume fraction change with respect to initial

End of injection (50 years)

k-feldspar behavior

- during CO₂ injection:
 - k-feldspar precipitation due to higher kinetic reactivity (2 orders of magnitude) with respect to other alumino-silicates minerals (illite, kaolinite) mainly in the sand zone due to solution equilibrium between sand and shale
 - $2 H_2O + K^+ + Al^{3+} + 3 SiO_{2(aq)} = KAlSi_3O_8 + 4H^+$
- during CO₂ storage:
 - k-feldspar dissolution due to other aluminosilicates reactions

Kaolinite volume fraction change with respect to initial

End of injection (50 years)

Illite volume fraction change with respect to initial

End of injection (50 years)

Alumino-silicates mineral behavior

k-feldspar + kaolinite + Mg^{2+} = quartz + illite + H_2O

- during CO₂ injection:
 - limited illite precipitation by Mg²⁺ availability and faster precipitations (dolomite, k-feldspar)
- during CO₂ storage:
 - larger illite precipitation due to mineral dissolutions (dolomite, k-feldspar, kaolinite)

Porosity changes with respect to initial

End of injection (50 years)

Permeability changes with respect to initial

End of injection (50 years)

Petrophysical behavior

- limited impact of mineral changes on petrophysical properties (K-φ)
 - − a slight porosity decrease ($\approx 10^{-3}$ p.u.)
 - a slight permeability decrease (< 1mD)
 - local heterogeneity enhancement due to nonuniform carbonate reactions between sand and shale layers

CO₂ geological trapping

Conclusions

- An efficient coupling approach is implemented to model reactive transport over CO₂ geological storage.
- The sequential implicit algorithm of COORES induces a **CPU time overhead of about 65%** for the reactive transport modeled (7 minerals, 16 aqueous species and 8 chemical elements) with respect to the two-phase flow (37500 grid blocks).
- Different characteristic times between carbonate (calcite and dolomite) and alumino-silicates minerals (illite, kaolinite, k-feldspar) induce competing fronts in the different rock-types of the model (sand and shale)
- The mineral changes have a limited influence on petrophysical properties and flow given their initial values